應(yīng)佛山大學(xué)數(shù)學(xué)學(xué)院副院長吳楚芬教授的邀請,,大連理工大學(xué)衣鳳歧教授于11月22日下午3點(diǎn),在騰訊會議(402-295-897)開展了題為“Spatiotemporal pattern formations of a reaction-diffusion SIRS epidemic disease model”的學(xué)術(shù)報告。吳楚芬教授主持線上學(xué)術(shù)報告會,,學(xué)院微分方程方向老師及研究生參會,。整個學(xué)術(shù)報告精彩紛呈,,理論與應(yīng)用相結(jié)合,,引起了師生熱烈的反響。報告后,,衣鳳歧教授針對研究生和年輕博士老師們提出的疑問,,開展了專門的輔導(dǎo),并確定了合作的研究內(nèi)容,。
報告簡介:I will report our recent work on the dynamics of a reaction-diffusion SIRS epidemic model with the general saturated nonlinear incidence rates. Firstly, for the ODEs system, we analyze the existence and stability of the disease-free equilibrium solution, the endemic equilibrium solutions as well as the bifurcating periodic solution. Our results also suggest that the ODEs system has a Allee effect, i.e., one can expect either the coexistence of a stable disease-free equilibrium and a stable endemic equilibrium solution, or the coexistence of a stable disease-free equilibrium solution and a stable periodic solution. Secondly, for the PDEs system, we are capable of deriving the Turing instability criteria in terms of the diffusion rates for both the endemic equilibrium solutions and the Hopf bifurcating periodic solution. The onset of Turing instability manifests itself as the appearance of new spatiotemporal patterns.
衣鳳岐教授簡介:大連理工大學(xué)數(shù)學(xué)科學(xué)學(xué)院教授,、博士生導(dǎo)師。主要從事微分方程與動力系統(tǒng)的研究,,特別關(guān)注反應(yīng)擴(kuò)散系統(tǒng)的分支理論及其應(yīng)用,。2008年獲哈爾濱工業(yè)大學(xué)基礎(chǔ)數(shù)學(xué)專業(yè)博士學(xué)位。2010年博士學(xué)位論文獲得全國優(yōu)秀博士學(xué)位論文提名論文,;2013年入選教育部新世紀(jì)優(yōu)秀人才支持計劃,;2014年主持的科研項目獲得黑龍江省科學(xué)技術(shù)獎二等獎。2020年入選大連市地方級領(lǐng)軍人才,。主持國家自然科學(xué)基金面上項目3項,。在包括J. Nonlinear Science, SIAM J. Appl. Math, JDE, JDDE, Physica D等雜志上發(fā)表論文20余篇。
版權(quán)所有 ? 佛山大學(xué)